II B.Tech - II Semester – Regular / Supplementary Examinations MAY - 2023

ELECTRICAL MACHINES - II (ELECTRICAL & ELECTRONICS ENGINEERING)

Duration: 3 hours

Code:20EE3402

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level

CO – Course Outcome

			BL	CO	Max.		
			DL		Marks		
		UNIT-I					
1	a)	Show the Torque-Slip characteristics of	L3	CO2	7 M		
		Three phase induction motor for different					
		rotor resistances.					
	b)	Deduce an expressions for rotor current, rotor	L4	CO4	7 M		
		emf and p.f of a 3-phase induction motor at					
		standstill and running conditions.					
	OR						
2	a)	With the help of neat diagram explain the	L3	CO2	7 M		
		constructional features of wound rotor type					
		of induction motor. Write advantages and					
		disadvantages of wound rotor type of					
		induction motor.					
	b)	A 3-phase induction motor has a 4 pole, star	L4	CO4	7 M		
		connected stator winding and runs at 220V,					
		50 Hz supply. The rotor resistance per phase					
		is 0.1Ω and reactance per phase is 0.9Ω . The					
		ratio of stator to rotor turns is 1.75. The full					
		Page 1 of A					

Max. Marks: 70

		load slip is 5% calculate (i) load torque in			
		Kg-m (ii) speed at maximum torque and			
		(iii) rotor emf at maximum torque.			
		UNIT-II			
3	a)	 460 V, 60 Hz, delta connected, three phase induction motor: No load test: Power input=380 W, line current=1.15 A at rated voltage. Blocked rotor test: power input=14.7 W, line current=2.1 A at the line voltage of 21 V. The friction and windage loss is 21 W, and the winding resistance between any two lines is 1.2 ohm. Determine the equivalent circuit 	L4	CO4	7 M
	b)	parameters of the motor. Illustrate the step-by-step procedure for obtaining the Circle diagram of three phase induction motor.	L3	CO2	7 M
		OR			
4	a)	A 4-pole, 50 Hz, 3-phase induction motor develops a maximum torque of 110 N-m at 1360 rpm. The resistance of the star- connected rotor is 0.25Ω /phase. Calculate the value of resistance that must be inserted in series with each rotor phase to produce a starting torque equal to half of the maximum torque.	L4	CO4	7 M
	b)	Why starters are necessary for starting an induction motor? Illustrate the various types of starters used for Induction motor starting?	L3	CO2	7 M

UNIT-III						
5	a)	Discuss in brief, how voltage regulation can L3 CO3 7 M				
		be computed by the synchronous impedance				
		method with neat sketch.				
	b)	A 3 phase 8 pole star connected alternator L4 CO5 7 M				
		has the armature coils short chorded by one				
		slot. The coil span is 165 [°] electrical. The				
		alternator is driven at the speed of 750rpm, if				
		there are 12 conductors per slot and flux per				
		pole is 50 mWb. Calculate the value of				
		induced emf across the terminals. OR				
6	a)	Explain the operation of a synchronous L3 CO3 7 M				
	<i>u)</i>	generator with a constant load and variable				
		excitation.				
	b)	The following test results are obtained on a L4 CO5 7 M				
		6600V alternator:				
		Open circuit 3100 5000 6600 7500 8300				
		Field current(amps)162537.55070				
		A field current of 20A is found necessary to				
		circulate full load current on short circuit of				
		the armature. Using ampere-turn method,				
		find the full load regulation at 0.8 pf lagging.				
UNIT-IV						
7	a)	Illustrate the different types of starting L3 CO3 7 M				
		methods of synchronous motor.				
	b)	A three phase, 250 hp, 2300 V, 60 Hz, Y L4 CO5 7 M				
		connected non-salient rotor synchronous				
		motor has a synchronous reactance of 11 Ω				

I			1		
		per phase. When it draws 165.8 kW, the			
		power angle is 15 electrical degrees. Neglect			
		ohmic losses. Determine (i) The excitation			
		voltage per phase E_F (ii) The supply line			
		current I _a and (iii) The supply power factor.			
		OR			
8	a)	Illustrate Why the synchronous machine is not a self-starting machine?	L3	CO3	7 M
	b)	Explain V and inverted V curves of a	L4	CO5	7 M
		synchronous machine at various power			
		factors.			
	``	UNIT-V		~~~	
9	a)	Explain with neat sketches the construction	L3	CO3	7 M
		and working principle of a Shaded-pole			
		induction motor.			
	b)	What is double field revolving theory?	L4	CO5	7 M
		Explain the equivalent circuit of single-phase			
		induction motor based on double filed			
		revolving theory?			
		OR	I	1	
10	a)	Explain the working and constructional	L3	CO3	7 M
		details of Single phase induction motor.			
		Draw the circuit diagrams of different types			
		of split phase single phase Induction motor.			
	b)	Explain the modifications required for a D.C	L4	CO5	7 M
		motor to be operated on A.C supply.			